気づくとマルチコア化が一般化したため、数値演算をするときにカジュアルにマルチスレッド対応にしたい状況も随分と増えてきました。計算時間が数分の一になる程度ですが、何時間もかかる計算もあります。GoやFortran 2008のように並列化容易なような言語もありますが、C言語など枯れた言語を使い続けたいと言うニーズもあります。この用途で人気なのはOpenMPです。
OpenMPはコメントアウトを利用したプリプロセッサとして実現しています。元ソースコード中のコメントにOpenMPへの命令を書いておき、OpenMPにそれに従って元ソースコードをSMP対応ソースコードに修正してから、コンパイルして実行ファイルを得るわけです。コンパイラが対応していると、コンパイルオプションを指定するだけで利用できます。
浮動小数点演算では最速のケースも多々あるJavaは数値演算でも使われるケースが多いでしょうが、OpenMPは公式にはサポートしていません。しかし、OpenMP互換プリプロセッサomp4jと言うのがあるので試しに使ってみました。チュートリアルの通り手軽に使える反面、エラーメッセージから問題究明に慣れが必要そうでした。
使うには、まずソースコードのforループなどの前に、コメントアウトした omp で始まる命令を書きます。単に命令を追加すれば良いだけではなく、平行処理するループ中ではbreakできないなど縛りがあるので、注意してください。
// omp parallel for
for (int nProductivity = 0; nProductivity < nGridProductivity; nProductivity++) {
次に、omp4j-1.2.jarを使ってコンパイル。
コンパイルができたら、実行。
ベルマン方程式によって簡単なマクロ経済モデルを解いたところ、倍以上、速くなりました。なお、言語が違うわけで当然ですが、公式と挙動が完全に一致するわけでは無いようです。例えばomp atomicでローカル変数の更新が上手くいかないので、volatileをつけたメンバー変数を更新させるなど工夫が要ると思います。